Please create a mobile app based on below name and description. The app should be designed with mobile-first principles, optimized for responsive for mobile devices.
Name: Quantum Description: This app creates a place where people can learn about quantum related herbal medicine for diseases like cancer, virus and related products.
I'll create a mobile-first educational app about herbal medicine. This will focus on providing educational information while including appropriate medical disclaimers.
I've created the Quantum mobile app with a focus on educational content about herbal medicine. Here are the key features:
Mobile-First Design:
Educational Content Structure:
Responsible Health Information:
User Experience:
The app provides a platform for learning about traditional herbal practices while maintaining appropriate medical disclaimers and focusing on education rather than medical advice.
I'll create the QuantumFarma mobile app with all the requested features including quantum technology education, product catalog, Pi Coin payment integration, and contact functionality.
I've created the comprehensive QuantumFarma mobile app with all the requested features:
Complete product catalog with categories:
The app is ready for Pi Network integration and provides a complete e-commerce experience for quantum-enhanced natural medicines!
import sys import numpy as np import torch import torch.nn as nn import torch.optim as optim from qutip import *
herbs_database = { 'Nhân sâm (Panax ginseng)': { 'hoat_chat': ['Ginsenosides (Rb1, Rg1)', 'Polysaccharides'], 'chiet_xuat': ['Chiết xuất bằng nước sôi', 'Chiết xuất bằng cồn'], 'cong_dung': 'Bổ khí, tăng cường hệ miễn dịch' }, 'Cam thảo (Glycyrrhiza uralensis)': { 'hoat_chat': ['Glycyrrhizin', 'Flavonoids'], 'chiet_xuat': ['Decoction', 'Solvent extraction'], 'cong_dung': 'Hòa vị, giảm viêm' }, # Thêm nhiều hơn nếu cần }
class HerbPredictor(nn.Module): def init(self): super(HerbPredictor, self).init() self.fc1 = nn.Linear(10, 5) # Giả sử vector hóa hoạt chất thành 10 features self.fc2 = nn.Linear(5, 2) # Output: 2 classes (ví dụ: 'Bổ khí' hoặc 'Giảm viêm')
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
def train_ai_model(): model = HerbPredictor() optimizer = optim.Adam(model.parameters(), lr=0.01) criterion = nn.CrossEntropyLoss()
# Dữ liệu mẫu: Hoạt chất vectorized -> label (0: Bổ khí, 1: Giảm viêm)
X = torch.tensor(np.random.rand(100, 10), dtype=torch.float32) # Random data
y = torch.tensor(np.random.randint(0, 2, 100), dtype=torch.long)
for epoch in range(10):
optimizer.zero_grad()
output = model(X)
loss = criterion(output, y)
loss.backward()
optimizer.step()
print("AI model trained for herb prediction.")
return model
def predict_with_ai(model, herb_name): if herb_name in herbs_database: # Giả sử vectorize hoạt chất input_vec = torch.tensor(np.random.rand(1, 10), dtype=torch.float32) output = model(input_vec) pred = torch.argmax(output).item() cong_dung_pred = ['Bổ khí dự đoán', 'Giảm viêm dự đoán'][pred] print(f"Dự đoán công dụng cho {herb_name} bằng AI: {cong_dung_pred}")
def quantum_predict(herb_name): if herb_name in herbs_database: # Simulate QSVM: Quantum circuit đơn giản qc = Qobj(np.array([[0, 1], [1, 0]])) # Pauli-X gate state = basis(2, 0) result = qc * state prob = abs(result.full())**2 pred = np.argmax(prob) print(f"Quantum simulation cho {herb_name}: Tương tác hoạt chất dự đoán (0/1): {pred}")