Revised Project Brief: Voice-Based Order Management System for Street Vendors
Objective: Develop a cross-platform voice-to-order management system for mobile food vendors using modern web technologies and AI integration.
Key Features:
Voice-to-Order Conversion
Real-time Database Management
Multi-platform Deployment (Web/Android/iOS)
Technical Stack:
Frontend:
Backend:
AI Services:
Client-Side Components
Voice Recording Interface
Order Visualization Dashboard
Real-time Order Updates
Server-Side Services
Audio Processing API
NLP Classification Engine
Order Management System
Core Implementation Flow:
Voice Input Handling
typescript // Capacitor Voice Recording Implementation import { VoiceRecorder } from 'capacitor-voice-recorder';
const toggleRecording = async () => { if (isRecording) { const { value: audioData } = await VoiceRecorder.stop(); await processAudio(audioData); } else { await VoiceRecorder.start(); } }; Audio Processing Pipeline
typescript // Whisper API Integration async function transcribeAudio(audioBlob: Blob) { const formData = new FormData(); formData.append('file', audioBlob, 'recording.webm'); formData.append('model', 'whisper-large-v3');
const response = await fetch('https://api.openai.com/v1/audio/transcriptions', {
method: 'POST',
headers: {
'Authorization': Bearer ${OPENAI_KEY}
},
body: formData
});
return response.json(); } Text Classification System
typescript // Order Parsing Logic Example interface OrderItem { dish: string; quantity: number; modifiers: string[]; }
function parseOrder(text: string): OrderItem[] { // Implement either: // 1. Rule-based parsing with regex // 2. ML model inference // 3. Hybrid approach } Database Schema:
typescript // Prisma Schema Example model Order { id Int @id @default(autoincrement()) createdAt DateTime @default(now()) items OrderItem[] }
model OrderItem { id Int @id @default(autoincrement()) dish String quantity Int modifiers Modifier[] }
model Modifier { id Int @id @default(autoincrement()) name String } Model Selection Guide:
Speech-to-Text
Production: OpenAI Whisper API (Best accuracy)
Local Alternative: HuggingFace Transformers.js with Distil-Whisper
Text Classification
Phase 1: Regex-based parser (Quick implementation)
Phase 2: spaCy NER model (Custom training)
Advanced: Fine-tuned BERT-base (Highest accuracy)
Development Roadmap:
Phase Duration Tasks
Audio Quality Management
Background noise suppression techniques
Sample rate optimization (16kHz recommended)
Order Validation System
Conflict resolution for ambiguous orders
Vendor confirmation workflow
Security Measures
API rate limiting
Vendor authentication system
Data encryption at rest/transit
Alternative Approaches:
On-device STT: TensorFlow.js + QuartzNet model
Local Database: SQLite for offline-first capability
Real-time: Firebase Realtime Database alternative
Documentation Plan:
Vendor onboarding guide
API specification docs
Troubleshooting manual
Maintenance checklist
This architecture provides a balance between development speed and scalability. For initial launch, consider using Whisper API + regex parsing, then gradually implement ML-based classification as order data accumulates. The hybrid approach allows for iterative improvement while meeting immediate vendor needs.
Create the frontend
Loading...
The code returns the following error:
useSidebar must be used within a Sidebar.
Revise the code to address the error.
I was previewing: /
Loading...
use indonesian language